Package: missSBM 1.0.4
missSBM: Handling Missing Data in Stochastic Block Models
When a network is partially observed (here, NAs in the adjacency matrix rather than 1 or 0 due to missing information between node pairs), it is possible to account for the underlying process that generates those NAs. 'missSBM', presented in 'Barbillon, Chiquet and Tabouy' (2022) <doi:10.18637/jss.v101.i12>, adjusts the popular stochastic block model from network data sampled under various missing data conditions, as described in 'Tabouy, Barbillon and Chiquet' (2019) <doi:10.1080/01621459.2018.1562934>.
Authors:
missSBM_1.0.4.tar.gz
missSBM_1.0.4.zip(r-4.5)missSBM_1.0.4.zip(r-4.4)missSBM_1.0.4.zip(r-4.3)
missSBM_1.0.4.tgz(r-4.4-x86_64)missSBM_1.0.4.tgz(r-4.4-arm64)missSBM_1.0.4.tgz(r-4.3-x86_64)missSBM_1.0.4.tgz(r-4.3-arm64)
missSBM_1.0.4.tar.gz(r-4.5-noble)missSBM_1.0.4.tar.gz(r-4.4-noble)
missSBM_1.0.4.tgz(r-4.4-emscripten)missSBM_1.0.4.tgz(r-4.3-emscripten)
missSBM.pdf |missSBM.html✨
missSBM/json (API)
NEWS
# Install 'missSBM' in R: |
install.packages('missSBM', repos = c('https://grosssbm.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/grosssbm/misssbm/issues
- er_network - ER ego centered network
- frenchblog2007 - Political Blogosphere network prior to 2007 French presidential election
- war - War data set
missing-datanasnetwork-analysisnetwork-datasetstochastic-block-model
Last updated 1 years agofrom:d379fadf69. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 02 2024 |
R-4.5-win-x86_64 | OK | Nov 02 2024 |
R-4.5-linux-x86_64 | OK | Nov 02 2024 |
R-4.4-win-x86_64 | OK | Nov 02 2024 |
R-4.4-mac-x86_64 | OK | Nov 02 2024 |
R-4.4-mac-aarch64 | OK | Nov 02 2024 |
R-4.3-win-x86_64 | OK | Nov 02 2024 |
R-4.3-mac-x86_64 | OK | Nov 02 2024 |
R-4.3-mac-aarch64 | OK | Nov 02 2024 |
Exports:%>%estimateMissSBMl1_similaritymissSBM_collectionmissSBM_fitobserveNetwork
Dependencies:alluvialaricodeblockmodelsclicodetoolscolorspacecpp11data.tablediagramdigestdplyrfansifarverfuturefuture.applygenericsggplot2globalsglueGREMLINSgtableigraphisobandKernSmoothlabelinglatticelavalifecyclelistenvmagrittrMASSMatrixmgcvmunsellnlmenloptrnumDerivparallellypbmcapplypillarpkgconfigplyrprodlimprogressrpurrrR6RColorBrewerRcppRcppArmadilloRcppEigenreshape2rlangRSpectrasbmscalesshapeSQUAREMstringistringrsurvivaltibbletidyselectutf8vctrsviridisLitewithr